# Some games and their topological consequences III 

Leandro F. Aurichi

ICMC-USP (Partially supported by FAPESP)

## Baire spaces

## Baire spaces

## Definition

A topological space is Baire if for every family $\left\langle A_{n}: n \in \omega\right\rangle$ of open dense subsets, $\bigcap_{n \in \omega} A_{n}$ is dense.

## A classical game

## A classical game

The Banach-Mazur game is played as follows:

## A classical game

The Banach-Mazur game is played as follows:

- Alice plays $A_{0}$ a non-empty open set;


## A classical game

The Banach-Mazur game is played as follows:

- Alice plays $A_{0}$ a non-empty open set;
- Bob plays $B_{0} \subset A_{0}$ a non-empty open set;


## A classical game

The Banach-Mazur game is played as follows:

- Alice plays $A_{0}$ a non-empty open set;
- Bob plays $B_{0} \subset A_{0}$ a non-empty open set;
- Alice plays $A_{1} \subset B_{0}$ a non-empty open set;


## A classical game

The Banach-Mazur game is played as follows:

- Alice plays $A_{0}$ a non-empty open set;
- Bob plays $B_{0} \subset A_{0}$ a non-empty open set;
- Alice plays $A_{1} \subset B_{0}$ a non-empty open set;
- Bob plays $B_{1} \subset A_{1}$ a non-empty open set;


## A classical game

The Banach-Mazur game is played as follows:

- Alice plays $A_{0}$ a non-empty open set;
- Bob plays $B_{0} \subset A_{0}$ a non-empty open set;
- Alice plays $A_{1} \subset B_{0}$ a non-empty open set;
- Bob plays $B_{1} \subset A_{1}$ a non-empty open set;
- an so on, for every $n \in \omega$.


## A classical game

The Banach-Mazur game is played as follows:

- Alice plays $A_{0}$ a non-empty open set;
- Bob plays $B_{0} \subset A_{0}$ a non-empty open set;
- Alice plays $A_{1} \subset B_{0}$ a non-empty open set;
- Bob plays $B_{1} \subset A_{1}$ a non-empty open set;
- an so on, for every $n \in \omega$.

At the end, Bob is declared the winner if $\bigcap_{n \in \omega} B_{n} \neq \emptyset$ and Alice is the winner otherwise.

## A classical relation

## A classical relation

## Theorem (Oxtoby)

$X$ is a Baire space if and only if Alice does not have a winning strategy for the Banach-Mazur game.

## Warming up

## Warming up

Suppose that $X$ is not Baire.

## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy.

## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy. Let $V$ be a non-empty open set and let $\left\langle A_{n}: n \in \omega\right\rangle$ be a sequence of open dense subsets such that $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset$.

## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy. Let $V$ be a non-empty open set and let $\left\langle A_{n}: n \in \omega\right\rangle$ be a sequence of open dense subsets such that $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset$.

- Alice plays $V \cap A_{0}$;


## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy. Let $V$ be a non-empty open set and let $\left\langle A_{n}: n \in \omega\right\rangle$ be a sequence of open dense subsets such that $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset$.

- Alice plays $V \cap A_{0}$;
- Bob plays $B_{0} \subset\left(V \cap A_{0}\right)$;


## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy. Let $V$ be a non-empty open set and let $\left\langle A_{n}: n \in \omega\right\rangle$ be a sequence of open dense subsets such that $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset$.

- Alice plays $V \cap A_{0}$;
- Bob plays $B_{0} \subset\left(V \cap A_{0}\right)$;
- Alice plays $B_{0} \cap A_{1}$;


## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy. Let $V$ be a non-empty open set and let $\left\langle A_{n}: n \in \omega\right\rangle$ be a sequence of open dense subsets such that $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset$.

- Alice plays $V \cap A_{0}$;
- Bob plays $B_{0} \subset\left(V \cap A_{0}\right)$;
- Alice plays $B_{0} \cap A_{1}$;
- and so on.


## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy. Let $V$ be a non-empty open set and let $\left\langle A_{n}: n \in \omega\right\rangle$ be a sequence of open dense subsets such that $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset$.

- Alice plays $V \cap A_{0}$;
- Bob plays $B_{0} \subset\left(V \cap A_{0}\right)$;
- Alice plays $B_{0} \cap A_{1}$;
- and so on.

Since $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset, \bigcap_{n \in \omega} B_{n}=\emptyset$.

## Warming up

Suppose that $X$ is not Baire. Let us show that Alice has a winning strategy. Let $V$ be a non-empty open set and let $\left\langle A_{n}: n \in \omega\right\rangle$ be a sequence of open dense subsets such that $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset$.

- Alice plays $V \cap A_{0}$;
- Bob plays $B_{0} \subset\left(V \cap A_{0}\right)$;
- Alice plays $B_{0} \cap A_{1}$;
- and so on.

Since $V \cap \bigcap_{n \in \omega} A_{n}=\emptyset, \bigcap_{n \in \omega} B_{n}=\emptyset$. Poor Bob.

The other direction

## The other direction

Now suppose that $X$ is Baire.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

Since $X$ is Baire, so it is $V=\sigma(\langle \rangle)$.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

Since $X$ is Baire, so it is $V=\sigma(\langle \rangle)$.
Lemma
$\bigcup_{B \in \tau_{\subset A}} \sigma(\langle B\rangle)$ is open dense in $V$.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

Since $X$ is Baire, so it is $V=\sigma(\langle \rangle)$.
Lemma
$\bigcup_{B \in \tau_{\subset A}} \sigma(\langle B\rangle)$ is open dense in $V$.
Proof.
Let $W \subset V$ be a non-empty open set.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

Since $X$ is Baire, so it is $V=\sigma(\langle \rangle)$.
Lemma
$\bigcup_{B \in \tau_{\subset A}} \sigma(\langle B\rangle)$ is open dense in $V$.
Proof.
Let $W \subset V$ be a non-empty open set. Then

$$
\emptyset \neq \sigma(\langle W\rangle) \subset W
$$

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

Since $X$ is Baire, so it is $V=\sigma(\langle \rangle)$.
Lemma
$\bigcup_{B \in \tau_{\subset A}} \sigma(\langle B\rangle)$ is open dense in $V$.
Proof.
Let $W \subset V$ be a non-empty open set. Then

$$
\emptyset \neq \sigma(\langle W\rangle) \subset W
$$

Let $S_{n}=\{$ all possible Alice's plays at the $n$-th inning $\}$.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

Since $X$ is Baire, so it is $V=\sigma(\langle \rangle)$.
Lemma
$\bigcup_{B \in \tau_{\subset A}} \sigma(\langle B\rangle)$ is open dense in $V$.
Proof.
Let $W \subset V$ be a non-empty open set. Then

$$
\emptyset \neq \sigma(\langle W\rangle) \subset W
$$

Let $S_{n}=\{$ all possible Alice's plays at the $n$-th inning $\}$.
Note that the above lemma just tells us that $\bigcup_{A \in S_{1}} A$ is open dense in $V$.

## The other direction

Now suppose that $X$ is Baire. Let $\sigma$ be a strategy for Alice. We will show that $\sigma$ is not winning.

Since $X$ is Baire, so it is $V=\sigma(\langle \rangle)$.
Lemma
$\bigcup_{B \in \tau_{\subset A}} \sigma(\langle B\rangle)$ is open dense in $V$.
Proof.
Let $W \subset V$ be a non-empty open set. Then

$$
\emptyset \neq \sigma(\langle W\rangle) \subset W
$$

Let $S_{n}=\{$ all possible Alice's plays at the $n$-th inning $\}$.
Note that the above lemma just tells us that $\bigcup_{A \in S_{1}} A$ is open dense in $V$. And basically with the same proof, $D_{n}=\bigcup_{A \in S_{n}} A$ is open dense in $V$ for every $n$.

## Bob can find a way

## Bob can find a way

Since $V$ is Baire, there is an $x \in \bigcap_{n \in \omega} D_{n}$.

## Bob can find a way

Since $V$ is Baire, there is an $x \in \bigcap_{n \in \omega} D_{n}$.
Now Bob just has to follow this $x$.

## Bob can find a way

Since $V$ is Baire, there is an $x \in \bigcap_{n \in \omega} D_{n}$.
Now Вов just has to follow this $x$. At the inning $n$, Bob just picks a open set that has $x$ in its interior.

## Bob can find a way

Since $V$ is Baire, there is an $x \in \bigcap_{n \in \omega} D_{n}$.
Now Bob just has to follow this $x$. At the inning $n$, Bob just picks a open set that has $x$ in its interior. Since $x$ is in the intersection, the answer from Alice will also contain $x$.

## Bob can find a way

Since $V$ is Baire, there is an $x \in \bigcap_{n \in \omega} D_{n}$.
Now Bob just has to follow this $x$. At the inning $n$, Bob just picks a open set that has $x$ in its interior. Since $x$ is in the intersection, the answer from Alice will also contain $x$. ?

We may have a problem here.

$$
0
$$

## What can happen?



How to solve it

## How to solve it

We have to change a bit the definition of the $D_{n}$ 's.

## How to solve it

We have to change a bit the definition of the $D_{n}$ 's.
Instead of just looking for the possible answers, we look for maximal antichains (and one being a refinement of the previous one).

$$
0
$$

It is better if we draw a picture


## Products

## Products

## Theorem

There are Baire spaces $X$ and $Y$ such that $X \times Y$ is not Baire.

## Products

## Theorem

There are Baire spaces $X$ and $Y$ such that $X \times Y$ is not Baire.
Let us call a space $X$ productively Baire if $X \times Y$ is Baire for all Baire space $Y$.

## Products

## Theorem

There are Baire spaces $X$ and $Y$ such that $X \times Y$ is not Baire.
Let us call a space $X$ productively Baire if $X \times Y$ is Baire for all Baire space $Y$.

## Theorem

If Bов has a winning strategy for the Banach-Mazur game, then the space is productively Baire.

Let us prove it only with games

## Let us prove it only with games

Suppose not.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$. Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire).

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$. Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$. Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$. Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.
Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.
Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$
Alice plays $W_{0}$ in the play over $Y$.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.
Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$
Alice plays $W_{0}$ in the play over $Y$.
Some Bob plays $U_{0} \subset W_{0}$ on $Y$.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.
Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$
Alice plays $W_{0}$ in the play over $Y$.
Some Bob plays $U_{0} \subset W_{0}$ on $Y$.
We go back to $X \times Y$ and let $V_{1} \times W_{1}=e a\left(\left\langle B_{0} \times U_{0}\right\rangle\right)$.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.
Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$
Alice plays $W_{0}$ in the play over $Y$.
Some Bob plays $U_{0} \subset W_{0}$ on $Y$.
We go back to $X \times Y$ and let $V_{1} \times W_{1}=e a\left(\left\langle B_{0} \times U_{0}\right\rangle\right)$.
Start over.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.
Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$
Alice plays $W_{0}$ in the play over $Y$.
Some Bob plays $U_{0} \subset W_{0}$ on $Y$.
We go back to $X \times Y$ and let $V_{1} \times W_{1}=e a\left(\left\langle B_{0} \times U_{0}\right\rangle\right)$.
Start over.
The point is, $\bigcap_{n \in \omega} B_{n}$ is non-empty.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$.
Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$
Alice plays $W_{0}$ in the play over $Y$.
Some Bob plays $U_{0} \subset W_{0}$ on $Y$.
We go back to $X \times Y$ and let $V_{1} \times W_{1}=e a\left(\left\langle B_{0} \times U_{0}\right\rangle\right)$.
Start over.
The point is, $\bigcap_{n \in \omega} B_{n}$ is non-empty. $\bigcap_{n \in \omega} B_{n} \times U_{n}=\emptyset$.

## Let us prove it only with games

Suppose not.
Let $b$ be a winning strategy for Bob in the Banach-Mazur game over $X$. Let ea be a winning strategy for Alice in the Banach-Mazur game over $X \times Y$ (since it is not Baire). Let us define a winning strategy for Alice over $Y$.

First note that we can suppose that ea always plays basic open sets.
Let $V_{0} \times W_{0}=e a(\langle \rangle)$.
$b$ can take care of it, so let $B_{0}=b\left(\left\langle V_{0}\right\rangle\right)$
Alice plays $W_{0}$ in the play over $Y$.
Some Bob plays $U_{0} \subset W_{0}$ on $Y$.
We go back to $X \times Y$ and let $V_{1} \times W_{1}=e a\left(\left\langle B_{0} \times U_{0}\right\rangle\right)$.
Start over.
The point is, $\bigcap_{n \in \omega} B_{n}$ is non-empty. $\bigcap_{n \in \omega} B_{n} \times U_{n}=\emptyset$. So
$\bigcap_{n \in \omega} W_{n}=\emptyset$.

It is not so confusing


## It is not so confusing



Cantor

## Cantor

## Proposition

Let $X \subset \mathbb{R}$. If Bob has a winning strategy for the Banach-Mazur game over $X$, then $X$ has a Cantor subspace.
$\hat{Q}$

Parallel realities

$\hat{Q}$

Parallel realities


Parallel realities


$$
0
$$

Parallel realities


Parallel realities


## Parallel realities



Parallel realities


## Bernstein

## Bernstein

## Definition

We say that $X \subset \mathbb{R}$ is a Bernstein set if it is uncountable and, for every uncountable closed set $F \subset X, F \cap X$ e $F \cap(\mathbb{R} \backslash X)$ are both non-empty.

## Bernstein

## Definition

We say that $X \subset \mathbb{R}$ is a Bernstein set if it is uncountable and, for every uncountable closed set $F \subset X, F \cap X$ e $F \cap(\mathbb{R} \backslash X)$ are both non-empty.

## Corollary

If $X$ is a Bernstein set, then Bob has no winning strategy.

Changing the game a little bit

## Changing the game a little bit

Let us make Bob's life easier:

## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;


## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;
- Bob plays $B_{0}^{1}, B_{0}^{2} \subset A_{0}$ non-empty open sets;


## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;
- Bob plays $B_{0}^{1}, B_{0}^{2} \subset A_{0}$ non-empty open sets; Let us define $B_{0}=B_{0}^{1} \cup B_{0}^{2} ;$


## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;
- Bob plays $B_{0}^{1}, B_{0}^{2} \subset A_{0}$ non-empty open sets; Let us define $B_{0}=B_{0}^{1} \cup B_{0}^{2}$;
- Alice plays $A_{1}^{1} \subset B_{0}^{1}, A_{1}^{2} \subset B_{0}^{2}$ non-empty open sets;


## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;
- Bob plays $B_{0}^{1}, B_{0}^{2} \subset A_{0}$ non-empty open sets; Let us define $B_{0}=B_{0}^{1} \cup B_{0}^{2}$;
- Alice plays $A_{1}^{1} \subset B_{0}^{1}, A_{1}^{2} \subset B_{0}^{2}$ non-empty open sets;
- Bob plays $B_{1}^{1}, B_{1}^{2} \subset A_{1}^{1}$ and $B_{1}^{3}, B_{1}^{4} \subset A_{1}^{2}$ non-empty open sets;


## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;
- Bob plays $B_{0}^{1}, B_{0}^{2} \subset A_{0}$ non-empty open sets; Let us define $B_{0}=B_{0}^{1} \cup B_{0}^{2}$;
- Alice plays $A_{1}^{1} \subset B_{0}^{1}, A_{1}^{2} \subset B_{0}^{2}$ non-empty open sets;
- Bob plays $B_{1}^{1}, B_{1}^{2} \subset A_{1}^{1}$ and $B_{1}^{3}, B_{1}^{4} \subset A_{1}^{2}$ non-empty open sets; Let us define $B_{1}=B_{1}^{1} \cup B_{1}^{2} \cup B_{1}^{3} \cup B_{1}^{4}$.


## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;
- Bob plays $B_{0}^{1}, B_{0}^{2} \subset A_{0}$ non-empty open sets; Let us define $B_{0}=B_{0}^{1} \cup B_{0}^{2}$;
- Alice plays $A_{1}^{1} \subset B_{0}^{1}, A_{1}^{2} \subset B_{0}^{2}$ non-empty open sets;
- Bob plays $B_{1}^{1}, B_{1}^{2} \subset A_{1}^{1}$ and $B_{1}^{3}, B_{1}^{4} \subset A_{1}^{2}$ non-empty open sets; Let us define $B_{1}=B_{1}^{1} \cup B_{1}^{2} \cup B_{1}^{3} \cup B_{1}^{4}$.
- And so on.


## Changing the game a little bit

Let us make Bob's life easier:

- Alice plays $A_{0}$ non-empty open set;
- Bob plays $B_{0}^{1}, B_{0}^{2} \subset A_{0}$ non-empty open sets; Let us define $B_{0}=B_{0}^{1} \cup B_{0}^{2}$;
- Alice plays $A_{1}^{1} \subset B_{0}^{1}, A_{1}^{2} \subset B_{0}^{2}$ non-empty open sets;
- Bob plays $B_{1}^{1}, B_{1}^{2} \subset A_{1}^{1}$ and $B_{1}^{3}, B_{1}^{4} \subset A_{1}^{2}$ non-empty open sets; Let us define $B_{1}=B_{1}^{1} \cup B_{1}^{2} \cup B_{1}^{3} \cup B_{1}^{4}$.
- And so on.

Bob is declared the winner if $\bigcap_{n \in \omega} B_{n} \neq \emptyset$ and Alice is the winner otherwise.

## Products again

## Products again

Like we did before, it is possible to show (about this new game) that

## Products again

Like we did before, it is possible to show (about this new game) that

- Alice has a winning strategy if, and only if, the space is not Baire;


## Products again

Like we did before, it is possible to show (about this new game) that

- Alice has a winning strategy if, and only if, the space is not Baire;
- If Bob has a winning strategy, then the space is productively Baire.


## Products again

Like we did before, it is possible to show (about this new game) that

- Alice has a winning strategy if, and only if, the space is not Baire;
- If Bob has a winning strategy, then the space is productively Baire.

Are these games different?

## Bernstein again

## Bernstein again

## Proposition

If $X$ is a Bernstein set, then Bob has a winning strategy for this new game.

Think that you are playing over $\mathbb{R}$


## Multiboard game

## Multiboard game

Let $B M^{2}$ be the 2-boards game version of Banach-Mazur.

## Multiboard game

Let $B M^{2}$ be the 2-boards game version of Banach-Mazur. There are two boards of the game, Alice starts playing on all the boards.

## Multiboard game

Let $B M^{2}$ be the 2-boards game version of Banach-Mazur. There are two boards of the game, Alice starts playing on all the boards. Then Вов answers playing in all the boards (following the rules on each board). Then Alice again and so on.

## Multiboard game

Let $B M^{2}$ be the 2-boards game version of Banach-Mazur. There are two boards of the game, Alice starts playing on all the boards. Then Вов answers playing in all the boards (following the rules on each board). Then Alice again and so on.

We say that Bob wins the game if he wins on all boards.

## Multiboard game

Let $B M^{2}$ be the 2-boards game version of Banach-Mazur. There are two boards of the game, Alice starts playing on all the boards. Then Вов answers playing in all the boards (following the rules on each board). Then Alice again and so on.

We say that Вов wins the game if he wins on all boards. Alice is the winner otherwise (i.e. Alice wins at some board).

## Really multiboard game

Let $B M^{\kappa}$ be the $\kappa$-boards game version of Banach-Mazur. There are $\kappa$ boards of the game, Alice starts playing on all the boards. Then Вов answers playing in all the boards (following the rules on each board). Then Alice again and so on.

We say that Вов wins the game if he wins on all boards. Alice is the winner otherwise (i.e. Alice wins at some board).

Seeing the games

$$
00000
$$

Seeing the games

0


0

Seeing the games

0
0


$\bigcirc$

0
0
$\bigcirc$
-

So...

- If $B O B$ has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If $B o b$ has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$
- If $B o b$ has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined,


## So...

- If Bob has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined, then Alice has a winning strategy for the $B M^{\kappa}$.


## So...

- If Bob has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined, then Alice has a winning strategy for the $B M^{\kappa}$.
- Given a space $X$, can we always find a $\kappa$ such as $B M^{\kappa}$ is determined?


## So...

- If Bob has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined, then Alice has a winning strategy for the $B M^{\kappa}$.
- Given a space $X$, can we always find a $\kappa$ such as $B M^{\kappa}$ is determined?
- Yes


## So...

- If Bob has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined, then Alice has a winning strategy for the $B M^{\kappa}$.
- Given a space $X$, can we always find a $\kappa$ such as $B M^{\kappa}$ is determined?
- Yes, kind of.
- If $B o b$ has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If Bob has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined, then Alice has a winning strategy for the $B M^{\kappa}$.
- Given a space $X$, can we always find a $\kappa$ such as $B M^{\kappa}$ is determined?
- Yes, kind of.
- If it is consistent that there is a proper class of measurable cardinals, then the above conjecture is consistently true. [1]
- If $B o b$ has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined, then Alice has a winning strategy for the $B M^{\kappa}$.
- Given a space $X$, can we always find a $\kappa$ such as $B M^{\kappa}$ is determined?
- Yes, kind of.
- If it is consistent that there is a proper class of measurable cardinals, then the above conjecture is consistently true. [1]
- The motivation for the conjecture was: if Bob has a winning strategy for $B M^{1}$ on $X$, then $\square_{\xi<\kappa} X$ is Baire for any $\kappa$.
- If Bob has a winning strategy for $B M^{1}$, he has one for $B M^{\kappa}$.
- If Alice has a winning strategy for $B M^{1}$, she has one for $B M^{\kappa}$.
- If $B o b$ has a winning strategy for $B M^{\kappa}$, he has one for $B M^{1}$.
- If you start with a Baire space where Bob does not have a winning strategy for $B M^{1}$ and $B M^{\kappa}$ is determined, then Alice has a winning strategy for the $B M^{\kappa}$.
- Given a space $X$, can we always find a $\kappa$ such as $B M^{\kappa}$ is determined?
- Yes, kind of.
- If it is consistent that there is a proper class of measurable cardinals, then the above conjecture is consistently true. [1]
- The motivation for the conjecture was: if Bob has a winning strategy for $B M^{1}$ on $X$, then $\square_{\xi<\kappa} X$ is Baire for any $\kappa$. Is the converse also true?


## Bibliography

F. Galvin and M. Scheepers.

Baire spaces and infinite games.
Archive for Mathematical Logic, 55(1-2):85-104, 2016.

